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Abstract
First-principles density functional calculations were performed to study strain
effects on the energy gaps in silicon nanoclusters with diameter ranging from
0.6 to 2 nm. Hydrostatic and non-hydrostatic strains have been found to
affect the energy gaps differently. For the same strain energy density, non-
hydrostatic strain leads to a significantly larger change in the energy gap of
silicon clusters compared to that of the hydrostatic strain case. In contrast,
hydrostatic and non-hydrostatic strain effects on the energy gaps of bulk Si
or larger size Si quantum dots are comparable. Non-hydrostatic strains break
the tetrahedral bonding symmetry in silicon, resulting in significant variation in
the energy gaps due to the splitting of the degenerate orbitals in the clusters.
Our results suggest that the combination of energy gaps and strains permits
the engineering of photoluminescence in silicon nanoclusters and offers the
possibility of designing novel optical devices and chemical sensors.

1. Introduction

The research area of nanoscale semiconductor structures has attracted considerable attention
over the past two decades. It has been shown that below a critical size (e.g. the exciton
Bohr radius of the bulk material), nanoscale semiconductors tend to exhibit unusual properties
primarily due to quantum confinement effects. For example, the band gap (or energy gap) in
a semiconductor nanocrystal increases significantly with the reduction in crystal size [1–6].
The occurrence of such unusual properties has created a plethora of opportunities and
applications that exploit semiconductor nanostructures. For instance, the size of semiconductor
nanostructures in the active region of luminescent devices can be tuned to control their emitting
wavelength. Indeed, the size effect on the energy gap (EG) in direct gap semiconductors
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(e.g. CdSe, PbS, PbSe) has been exploited in a wide range of applications, such as solar cells,
light emitting diodes (LEDs), electroluminescence, optoelectronics, photonics, security ink,
and biotags [7–10]. Silicon has been the mainstay material for electronics, but had a limited
impact on the area of optoelectronics because of its indirect band gap, low electron mobility,
and its inability to exhibit the electro-optic Pockels effect. However, recent breakthroughs
such as doping Si with erbium to overcome the indirect band gap [11], optical amplification
through Raman effect [12], dislocation engineering [13, 14], fast Si optical modulator [15], and
Raman Si laser [16–18] have sparked intense interest in the field of bulk Si photonics [19, 20].
These advances dramatically change the fortunes of Si as a material for optoelectronic
applications. In this field, nanostructured Si occupies a distinctive place, since it exhibits visible
photoluminescence unlike its bulk counterpart. The phenomenon of visible photoluminescence
in Si was first discovered by Canham [21] in the early 1990s. Since then several researchers
have conducted experimental and theoretical studies showing that EG in Si nanoclusters can
be modified by varying their dimensions and/or their surface composition [1–3, 22–25]. In
the semiconductor industry, band gaps of bulk semiconductors are routinely engineered by
applying strain and corresponding deformation potentials. Liao et al [26] investigated the effect
of biaxial tensile mechanical strain on the metal–oxide–silicon light emitting diode and found
that EG in Si decreases continuously under strain. Buda et al [27] studied EG in the III–V
semiconductor clusters encapsulated in a sodalite cage and observed a shift in EG due to the
resultant tensile/compressive strain exerted by the cage.

In our previous study [28], the effect of hydrostatic strain on EG in Si nanoclusters was
reported. We found that strain effects on the band gaps display qualitatively new trends for
nanoclusters smaller than 2 nm. While the bulk indirect band gap increases linearly with
increasing strain, this trend is reversed in small clusters less than 1 nm. In the intermediate
size range of 1–2 nm, hydrostatic strain appears to have almost no effect. Finally, for clusters
larger than 2 nm, the bulk behaviour is recovered. In the present work, we extend our
previous investigation to include other types of strain that result in bond angle distortion in
Si nanoclusters. In particular, we focus on two types of non-hydrostatic strains, namely biaxial
and shear.

2. Methodology

The electronic properties of a series of Si clusters are carried out using first-principles density
functional theory (DFT) based on the generalized gradient approximation (GGA) [29]. In
particular, we have used Perdew–Wang 91 (PW91) exchange and correlation functional [30]
and pseudopotential plane wave approach with the supercell method. The core electrons are
described using ultrasoft Vanderbilt pseudopotentials [31] within the computational VASP
code [32]. The size of the simulation cell is chosen so that the distance between the cluster
and its replica (due to the periodic boundary condition) is more than 1.2 nm. Under this
configuration, the interactions between the cluster and its replica are negligible. The kinetic
energy cut-off for the plane wave basis set is 300 eV corresponding to about 106 plane waves
in the cubic simulation cell (3 nm in side). We used 600 eV cut-off for the convergence test on
a small cluster Si5H12 and found that the change in EG is less than 0.02%.

Spherical Si clusters in the size range of 0.6–2 nm, with one Si atom at the centre, are used
in this study. The original coordinates of the clusters are derived from bulk Si with a lattice
constant of 0.5461 nm. The dangling bonds on the surface are passivated using hydrogen atoms
to maintain the tetrahedral configuration in Si, at an initial Si–H bond length of 0.147 nm. The
clusters are then relaxed to minimize the total energy using the conjugate gradient algorithm.
The local minimum is achieved when all the residual forces acting on the atoms are less than
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0.02 eV Å
−1

. We also used a more stringent relaxation criterion of 0.002 eV Å
−1

and found
that it has a negligible effect (less than 0.1%) on EG.

EG in Si nanocluster is defined as the energy difference between the highest occupied
molecular orbital (HOMO, i.e. valence band) and lowest unoccupied molecular orbital (LUMO,
i.e. conduction band). It is known that density functional method underestimates the band
gap as compared to the experimental value, while the more accurate GW method [33] and
Monte Carlo calculations provide better quantitative predictions. However, previous studies
on Si nanoclusters and nanowires show that the HOMO–LUMO gap predicts a similar size
dependence to the optical gap obtained by the GW and quantum Monte Carlo methods [24, 34].
In addition, as reported by Peng et al [28], the variation of HOMO–LUMO gap with hydrostatic
strain is in excellent agreement with that of the optical gap predicted from the advanced
configuration interaction method. Based on this information we anticipate our results would
correctly describe the strain effects on EG in Si clusters.

The delineations of the biaxial and shear strains, as well as the hydrostatic strain for the
purpose of later comparison, are given in the following. Hydrostatic strain is applied to the
cluster by rescaling the three coordinates of all the atoms up to ±8%. Positive strain refers
to expansion of a cluster while negative strain corresponds to its compression. In the case of
biaxial strain, the nanocluster is deformed in two dimensions while the unconstrained third
dimension is allowed to accommodate the resulting deformation. In a typical simulation, we
apply two-dimensional in-plane strains of up to ±8% by rescaling x and y coordinates of the
atoms followed by relaxing the entire structure. In contrast to the hydrostatic strain, which only
modifies the bond lengths homogeneously, the biaxial strain results in a change in the bond
angle. This angle change leads to a distortion of Si tetrahedral bonding network. The other
non-hydrostatic type of strain we considered is shear strain. It should be noted the definition of
shear at nanoscale is not unique, and the continuum mechanics community has identified the
plethora of issues related to the so-called Cauchy–Born rule for non-standard shaped nanosized
clusters [35]. In this paper, simple shear strain is mathematically defined as tan θ = �d/ l,
where l is the original length of a given line, �d is the amount of deformation perpendicular
to that given line, and θ is the angle the sheared line makes with its original orientation. In our
study on shear strain, l is taken as the z coordinate of the atoms and �d is the displacement of
the atoms along x-direction. Similar to the case of the biaxial strain, the shear strain results in a
distortion of the Si tetrahedral bonds. We realize that the magnitudes of the strains are beyond
the elastic limit in bulk Si. However, in the case of nanoclusters, the nucleation of defects, such
as dislocations and disclinations, remains energetically unfavourable until the strain reaches a
considerably higher level [36].

3. Results and discussion

A series of Si clusters with one atom at the centre are studied in present work. The
characteristics of these clusters are summarized in table 1. The diameter of a given cluster is
determined by the formula a(0.75NSi/π)1/3, where NSi and a are the number of Si atoms and
the lattice constant (0.5461 nm), respectively. EG in the last column is the HOMO–LUMO gap
of the geometry-relaxed cluster calculated using DFT (PW91). Our predicted energy gaps for
Si clusters are in excellent agreement with previous studies [1, 3, 23] and a detailed comparison
between our results and the literature is presented in [28].

Subsequently, biaxial and shear strains are applied to the clusters. The effect of biaxial
strain on EG in Si clusters and bulk is shown in figure 1. As seen in the figure, EG decreases,
almost in a parabolic fashion, under both tensile (positive sign) and compressive (negative
sign) strains in all cases. For example, EG in Si35H36 is decreasing from 3.51 to 3.24 eV for
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Figure 1. The DFT HOMO–LUMO gap as a function of biaxial strain for different size Si clusters
and bulk, (a) Si5H12; (b) Si35H36; (c) Si123H100; (d) bulk. Positive strain refers to expansion while
negative strain corresponds to compression.

Table 1. A list of studied Si clusters in present work. NSi is the number of Si atoms in a given
cluster; NH is the number of H atoms needed to saturate the surface dangling bonds. The columns
of x coordination (for short, ‘x-coord.’, x = 1, 2, 3, 4) represent the numbers of Si atoms which
connect to other x Si and have 4 − x dangling bonds. The diameter of a cluster is determined by
the number of the Si atoms through the formula a(0.75NSi/π)1/3 where a is Si lattice constant
0.5461 nm. EG is the DFT HOMO–LUMO gap for the geometry-relaxed cluster.

NSi NH 4-coord. 3-coord. 2-coord. 1-coord. Diameter (nm) EG (eV)

5 12 1 0 0 4 0.58 5.60
17 36 5 0 0 12 0.87 4.28
29 36 5 12 12 0 1.04 3.64
35 36 5 24 6 0 1.11 3.51
47 60 17 12 6 12 1.22 3.20
59 60 17 24 18 0 1.32 3.00
87 76 35 28 24 0 1.50 2.59

123 100 59 28 36 0 1.68 2.38

both tensile and compressive 4% biaxial strains. Similarly, EG in Si123H100 decreases from
2.38 to 2.04 eV under ±4% strain. In order to understand the EG–strain relation presented in
figure 1, we further examined the energies of HOMO and LUMO in these clusters. We found
the HOMO energy to vary with the biaxial strain in a similar fashion for all the clusters listed
in table 1. Specifically, the HOMO energy increases with both tensile and compressive biaxial
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Figure 2. The variation of the orbital energies of HOMO and LUMO in Si35H36 under biaxial
strain.

strain. Meanwhile, the LUMO energy decreases under biaxial expansion and compression. As
an example, the LUMO and HOMO energies in the cluster Si35H36 as a function of biaxial
strain are presented in figure 2. We will continue to use this cluster Si35H36 as a study case
in the remainder of the paper for understanding of various properties. Figure 2 shows that
the LUMO energy decreases while the HOMO energy increases with biaxial strain. We will
discuss the possible reasons for the energy variations of LUMO and HOMO in Si clusters in
greater detail later in the paper.

In the case of shear strain, we applied deformation along positive x-direction. As in case
of biaxial strain, the variation in EG with shear strain is independent of the cluster size. For all
clusters listed in table 1, the decrease in EG with shear strain is similar to that of bulk Si. EG,
HOMO and LUMO energies as a function of shear strain for the cluster Si35H36 are shown in
figure 3. As can be seen in this figure, both EG and LUMO energy decrease dramatically with
shear strain, whereas the HOMO energy increases more gradually with strain.

In brief, biaxial and shear strains result in reduced EG in Si clusters. In order to explain
the observed variations of EG, HOMO and LUMO energies with strain, we have examined the
molecular orbitals of the Si clusters near their Fermi level. The orbital energies near the Fermi
level in the cluster Si35H36 (relaxed and under strains) are presented in figure 4. L2, L5 and
L7 are the energy levels in the unstrained relaxed Si35H36; L1 and L3 are the energy levels in
Si35H36 under hydrostatic compression and expansion; L4 and L6 display orbital levels under
biaxial compression and expansion; while L8 shows orbital energies under shear strain. The
Fermi level is represented by the dotted line in the middle. For the relaxed cluster, the molecular
orbitals typically degenerate due to the tetrahedral symmetry in Si. The degeneracy of an orbital
is represented by the number of dashes in a line in figure 4. For instance, HOMO in relaxed
Si35H36 (see L2) is a threefold degeneracy and it is described by a line with three dashes.
As mentioned in the earlier section, hydrostatic strain is isotropically applied to the cluster
and only changes the length of the bonds, without affecting the bond angles i.e. the tetrahedral
symmetry in the Si network is preserved under the hydrostatic strain. As a result, the hydrostatic
strain does not split the degenerate orbitals as seen in L1 and L3 in figure 4. For instance, the
threefold degeneracy of HOMO in L2 is preserved under hydrostatic strain. The energy shifts
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Figure 3. (a) The energy gap in Si35H36 as a function of shear strain; (b) the variation of the orbital
energies of HOMO and LUMO in Si35H36 with the shear strain.

of HOMO and LUMO under hydrostatic strain in this size range can be understood from their
orbital characters as follows (see [28]). Both HOMO and LUMO of the cluster have bonding
characters (not shown here), that is, the electron cloud is mainly located in the intermediate
regions shared by silicon atoms. The reduction of Si–Si bond lengths on compression make the
electron cloud of HOMO and LUMO more efficiently shared by Si atoms. This results in an
increased electron–nucleus Coulomb attraction, thus an appreciable decrease of both HOMO
and LUMO energy levels (the change in the electron–electron repulsion energy is relatively
small). In contrast, with expansion, both HOMO and LUMO energy levels increase due to
the decrease of electron–nucleus attraction. This results a negligible change in the EG [28].
However, the non-hydrostatic strains studied distort the clusters and break the Si tetrahedral
symmetry. We expect this distortion to result in splitting of the degenerated orbitals as seen in
L4, L6 and L8 in figure 4. For example, the threefold HOMO has been split into two levels
under biaxial strain and into three levels under shear strain. Note that in the case of biaxial
strain, the strain is applied in the xy plane by rescaling the coordinates of x, y components.
The symmetry in the xy plane is still maintained thereby resulting in a twofold-degenerate
state as in L4 and L6 in figure 4. Under shear strain, the symmetry in Si is largely destroyed
and the degeneracy of the orbitals is lifted as shown in L8 in figure 4.

In addition to the splitting of the orbitals, we also observed shifting of the orbital energies
in strained clusters. For conciseness, we will only discuss the case of shear strain, though
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Figure 4. Orbital energies levels near Fermi level (the dotted line in the middle) in the cluster
Si35H36. The degeneracy of an orbital is represented by a number of dashes in a line. L1, hydrostatic
compressed; L3, hydrostatic expanded; L4, biaxial compressed; L6, biaxial expanded; L8, under
shear strain; L2, L5 and L7 for the geometry-relaxed cluster and are the reference energy levels in
each of the three categories of strains.

similar results are observed for clusters under biaxial strain. If we compare L7 and L8, the
threefold-degenerate HOMO splits into three orbitals with different energies. The energy of the
highest orbital of these three levels is now taken as the new HOMO energy. On the other hand,
the LUMO energy of the strained cluster decreases because of the splitting of the degenerate
orbitals above the LUMO level of the unstrained cluster.

As delineated in figure 4, hydrostatic strain modifies EG in Si35H36 negligibly because
the energies of HOMO and LUMO shift down or up simultaneously under strain (see L1 and
L3). However, the non-hydrostatic strains change the EG primarily because the HOMO energy
increases while LUMO energy decreases under strain (see L4, L6 and L8). In addition, the
absolute change in the amplitude of EG under shear strain is larger than that with biaxial strain.
To gain a better understanding, we now compare the effects on EG under these three types
of strains in a more quantitative manner. In figures 1–3, the variations of EG with strains are
presented with strain defined as the percentages of the coordinate rescaling in Si clusters. Note
that three coordinates are rescaled in hydrostatic strain; two coordinates in biaxial strain and
one in shear strain. For example, under 4% strain, one expects more strain energy applied to the
cluster under hydrostatic strain and less strain energy applied to the cluster under shear strain.
In order to compare the clusters under equivalent deformation states in terms of strain energy,
we have plotted EG as a function of strain energy density, which is defined as the difference in
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the total energy between the relaxed and strained clusters divided by the volume of the cluster.
Figure 5 shows the result of this comparison for cluster Si35H36. Clearly, hydrostatic strain
exhibits a very weak influence on EG. However, biaxial strain, especially shear strain, affect
EG distinctly. For instance, EG shifts down 0.04 eV with strain energy density of 3.5 eV nm−3

(i.e. −4% hydrostatic compression). However, EG reduces by 0.68 eV with strain energy
density of 2.7 eV nm−3 under shear strain.

In summary, we investigated the strain effects on EG in Si nanoclusters with sizes up to
2 nm using first-principles density functional theory. We found that different types of strain
affect the EG in distinct fashions. Hydrostatic strain has a relatively weak effect on EG in the
size range 1–2 nm. Non-hydrostatic strains, which break the tetrahedral bonding symmetry in
Si are result in significant variation in EG due to splitting of degenerate orbitals in the clusters.
Our results suggest that photoluminescence in Si nanoclusters can be engineered by controlling
their size and applied strain. This offers an exciting avenue for designing new classes of optical
devices and chemical sensors.
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